WCDS: A Two-Phase Weightless Neural System for Data Stream Clustering
نویسندگان
چکیده
منابع مشابه
A Weightless Neural Network-Based Approach for Stream Data Clustering
One of the major data mining tasks is to cluster similar data, because of its usefulness, providing means of summarizing large ammounts of raw data into handy information. Clustering data streams is particularly challenging, because of the constraints imposed when dealing with this kind of input. Here we report our work, in which it was investigated the use of WiSARD discriminators as primary d...
متن کاملClustering data streams with weightless neural networks
Producing good quality clustering of data streams in real time is a difficult problem, since it is necessary to perform the analysis of data points arriving in a continuous style, with the support of quite limited computational resources. The incremental and evolving nature of the resulting clustering structures must reflect the dynamics of the target data stream. The WiSARD weightless perceptr...
متن کاملsynthesis of platinum nanostructures in two phase system
چکیده پلاتین، فلزی نجیب، پایدار و گران قیمت با خاصیت کاتالیزوری زیاد است که کاربرد های صنعتی فراوانی دارد. کمپلکس های پلاتین(ii) به عنوان دارو های ضد سرطان شناخته شدند و در شیمی درمانی بیماران سرطانی کاربرد دارند. خاصیت کاتالیزوری و عملکرد گزینشی پلاتین مستقیماً به اندازه و- شکل ماده ی پلاتینی بستگی دارد. بعضی از نانو ذرات فلزی در سطح مشترک مایع- مایع سنتز شده اند، اما نانو ساختار های پلاتین ب...
On a hybrid weightless neural system
A hybrid system using weightless neural networks (WNNs) and finite state automata is described in this paper. With the use of such a system, rules can be inserted and extracted into/from WNNs. The rule insertion and extraction problems are described with a detailed discussion of the advantages and disadvantages of the rule insertion and extraction algorithms proposed. The process of rule insert...
متن کاملA Fuzzy C-means Algorithm for Clustering Fuzzy Data and Its Application in Clustering Incomplete Data
The fuzzy c-means clustering algorithm is a useful tool for clustering; but it is convenient only for crisp complete data. In this article, an enhancement of the algorithm is proposed which is suitable for clustering trapezoidal fuzzy data. A linear ranking function is used to define a distance for trapezoidal fuzzy data. Then, as an application, a method based on the proposed algorithm is pres...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: New Generation Computing
سال: 2017
ISSN: 0288-3635,1882-7055
DOI: 10.1007/s00354-017-0018-y